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Abstract 
The quasiperiodic structure of decagonal A170Ni15Co15 
was determined on the basis of X-ray single-crystal 
intensity data using the n-dimensional embedding 
method. Centrosymmetric five-dimensional space group 
PlOs/mmc, three-dimensional reciprocal and direct 
quasilattice parameters: ai* = 0.2636 (1) A -1, i = 1,..., 4, 
as* = 0.24506 (3)A -1, ai = 3.794 (1)A, i = 1,..., 4, a5 
= 4.0807 (3) A. Five-dimensional unit-cell parameters: di 
= 3.393 (1), d5 = 4.0807 (3)A, aij = 60 °, c~i5 -- 90 °, i , j  
= 1,..., 4, V = 302.4/~5, Mr = 36.54, Dx = 4.5 Mg m -3, 
# = 10.1 mm -1, Mo Kc~, wR --- 0.078, R = 0.091 for 253 
unique reflections and 21 variables. A five-dimensional 
structure model was obtained by Patterson syntheses and 
refined by the least-squares technique. High-resolution 
electron-density maps were calculated by the maximum- 
entropy method. The structure is formally built up by 
two quasiperiodic atomic layers with stacking sequence 
Aa (a denotes the layer A rotated around 27r/10). It is 
essentially isotypic to that of decagonal A165Cu20Co15 
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and shows locally a close resemblance to monoclinic 
All3C04. Columnar clusters parallel to the local ten- 
fold screw axes, formed by ten pentagonal antiprismatic 
columns surrounding a central column, are found to be 
the basic structural building elements. Quasiperiodicity 
is forced by the formation of interconnected networks 
of closed icosagonal rings of pentagonal and rectangular 
structure motifs. 

Introduction 

Decagonal quasicrystals represent interesting interme- 
diate states between icosahedral and crystalline phases 
with anisotropic physical and mechanical properties. The 
stable decagonal phase A170NilsCO15, with needle-like 
decagonal prismatic morphology, was first synthesized 
by Tsai, Inoue & Masumoto (1989) by slow solidifica- 
tion. Its stability range between 773 K and the melting 
point was studied by Kek (1991). Other stable decagonal 
phases were found in the systems A1-Cu-Co by He, 
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Zhang, Wu & Kuo (1988), in A1-Cu-Rh and A1-Ni-Rh 
by Inoue, Tsai & Masumoto (1990), and in A1-Pd-Me 
with Me = Mn, Fe, Ru and Os by Beeli, Nissen & 
Robadey (1991) and by Tsai, Inoue & Masumoto ( 1991 ). 
The first quantitative n-dimensional structure analyses 
of decagonal phases were carded out for A1-Cu-Co by 
Steurer & Kuo (1990) [in the following referred to as 
paper (I)], for AI-Ni-Co by Yamamoto, Kato, Shibuya 
& Takeuchi (1990), for AI-Mn by Steurer (1991) and 
for A1-Mn-Pd by Steurer (1993). A structural study of 
A1-Ni-Co using high-resolution transmission electron 
microscopy (HRTEM) was performed by Hiraga, Lin- 
coin & Sun (1991); the results of an electron-diffraction 
investigation of decagonal and approximant phases in the 
system A1-Ni-Co were reported by Edagawa, Ichihara, 
Suzuki & Takeuchi (1992a,b); high-order Laue-zone 
(HOLZ) patterns of decagonal A1-Ni-Co were discussed 
by Yan, Wang, Gui, Dai & He (1992). Besides this small 
number of experimental structural papers on decagonal 
A1-Ni-Co many theoretical studies have been published: 
Kang & Dubois (1993), Daulton & Kelton (1992), Song 
& Ryba (1992), Burkov (1991), to quote only a few, 
based mostly on the same sparse experimentally based 
knowledge about isotypic decagonal A1-Cu-Co-(Si). 
For a short review of the current models of decagonal 
structures see Henley (1993). The purpose of the present 
work was to obtain quantitative information about the 
structure of decagonal A1-Ni-Co in greater detail and 
based on more reliable experimental data than in the 
studies published previously. 

Problems of quasicrystal structure analysis 

S y m m e t r y  a n d  metr ics  

The present structure analysis was carried out 
using the n-dimensional embedding method ( c f  Janssen, 
1988). The assignment of three-dimensional reciprocal 
basis vectors ai*, the indexing of reflections and the 
embedding was performed in the same way as described 
in paper (I) for decagonal A165Cu20Cols. Thus, only 
a short summary is given here: the five-dimensional 
embedding space V = (V II, V -l-) consists of two 
orthogonal subspaces, the three-dimensional physical 
(parallel, external) space V II with basis vectors vl, v2, v3 
and the two-dimensional perpendicular (complementary, 
intemal) space V ± with basis vectors v4, vs. All 
physical-space reciprocal lattice vectors I ' l  II = hl~a] * 
+ hl[a~ * + hl~a~ * = hlal* + h2a2* + h3a3* + haa4* 
+ hsas*, with hi[, hi[ irrational and hl~, hi, i = 
1,..., 5, integer numbers, can be written as linear 
combinations of the five reciprocal basis vectors a~* 
= ai*(cos27ri /5,s in27ri[5,0)  with i -- 1,..., 4 and as* -- 
as*(O01). The star of these five reciprocal-basis vectors 
corresponds to a projection of the hypothetical five- 
dimensional reciprocal basis vectors di*  = (a /* ,O,  a3i*) ,  

i = 1 ..... 4, ds* = (O, as*,O) upon V II. The direct-basis 

vectors (in the following called d basis), spanning the 
unit cell in five-dimensional space, can be written in 
the form di  = 2/(5ai*)(cos27ri[5 - 1 ,s in27ri /5 ,0,cos6rci]5 
- 1,sin67ri]5), i = 1 ..... 4 and d5 = 1/as*(00100); the 
vector components refer to the above-mentioned five- 
dimensional orthogonal coordinate system spanned by 
the basis vectors vi, i -- 1,..., 5 (in the following called v 
basis). The absolute values of the vectors di*, d; amount 
to di* = 21/2ai*, i = 1,..., 4, ds* = as*, and di = 2/(51/2ai*), 
i = 1 . . . . .  4, d5 = 1~as*, respectively. The n-dimensional 
least-squares structure refinements were performed on 
the d basis, the MEM calculations and the representation 
of the plots on the v basis. 

Data  se t  

Mostly because of the poor quality of the single 
crystals, especially in the case of decagonal phases, 
quasicrystal structure refinements do not give final R 
factors near 0.01 for complete data sets. Since the crystal 
quality and the eventual formation of microdomains 
or twins depends strongly on the conditions of crystal 
growth and thermal treatment ( c f  Grushko, 1993, and 
references therein), quasicrystals of different origin and 
history may lead to different structure analysis results. 
Consequently, a detailed characterization of the crystals 
used, comprising diffraction patterns, should always be 
given in structural papers when phase diagrams are not 
known accurately. 

What is the actual definition of a full data set in 
the case of quasicrystals with reflections densely filling 
the reciprocal space leading to an infinite number of 
reflections in the usual data-collection range 0 ___ sin0/A 
< 0.7 A -I, corresponding to [H I -- 2sin0/A -- 1.4 A-l? 
A simple answer can be given in terms of the n- 
dimensional description of quasiperiodic structures: the 
limiting sphere in three-dimensional reciprocal space is 
replaced by a hypersphere in n-dimensional reciprocal 
space with radius Irll = 1.4 A -1 (H now being an n- 
dimensional reciprocal-lattice vector). Such a data set 
warrants a well defined isotropic resolution function in 
all directions of the n-dimensional direct space compa- 
rable to that obtained in conventional structure analysis. 

Twinning  

For any diffraction study, it is essential to know 
whether the measured intensity data stem from a coher- 
ently scattering single crystal or from coherently or inco- 
herently scattering twin individuals. The problems which 
arise during structure analyses of twinned crystals are 
well known from conventional structure determinations 
( c f  Araki, 1991, and references therein). The appearance 
of electron-diffraction patterns with tenfold rotational 
symmetry taken from twinned crystalline samples was 
demonstrated, for instance, by Song, Wang & Ryba 
(1991) and Fung, Zou & Yang (1987). In these cases, 
each single diffraction pattern of five or ten incoherently 
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scattering crystalline twin individuals can basically be 
identified, merohedral twinning is not possible. The test 
for incoherent twinning may become quite simple: our 
sample of A170NilsCO15 shows systematically absent 
Bragg reflections (Fig. 1) of the type 

hlh2h2hlhs: h5 = 2n + 1, (O000hs: h5 = 2n + 1) 

indicating c-glide planes and a 105-screw axis leading 
to the five-dimensional superspace groups PlOsmc and 
PlOs/mmc, respectively (Rabson, Mermin, Rokhsar & 
Wright, 1991). This information rules out the case of 
incoherent twinning, since by superposition of the five or 
ten diffraction patterns of the respective twin individuals 
systematic absences with tenfold symmetry can never 
be obtained. One cannot exclude, however, pseudo- 
merohedral twinning of high-order approximants which 
also show a pseudo-decagonal diffraction symmetry with 
pseudo-extinction rules. Since it is known from high- 
temperature studies (Hiraga, Lincoln & Sun, 1991) that 
single grains of decagonal AI-Ni-Co give electron- 
diffraction patterns with diffraction symmetry lOmm and 
the systematic absences mentioned above, the intensity 
distribution of merohedrally twinned high-order approx- 
imants would be quite similar to that of the decagonal 
phase. Consequently, even a structure analysis assuming 
that such a twin data set was that of a decagonal 
phase would yield an acceptable structure model of the 
decagonal phase. 

Microdomain structures, approximants 
How would the results of our n-dimensional struc- 

ture analysis be biased if the sample used were in 
fact a high-order rational approximant or a kind of 
crystalline microdomain structure with average pseudo- 
tenfold symmetry? The X-ray precession, cone-axis and 
Laue photographs of decagonal A170Ni15Co15 (Fig. 1) 
as well as four-circle diffractometer data show that the 
Bragg reflections are as sharp as those of metal crystals 
within our experimental resolution of about 0.002 A -1. 
Deviations from l O/mmm diffraction symmetry are not 
observable [the angle between ai* and ai ÷ 1" amounts to 
72.00 (2)°]. These facts would be consistent with diffrac- 
tion from perfect quasicrystals, high-order approximants 
in the form of single crystals or pseudo-merohedral 
twins (incoherently twinned regular crystalline samples 
were already excluded because of the systematic ex- 
tinctions observed) or random-tiling structures in the 
broadest sense of the word, also including crystalline mi- 
crodomain structures with overall decagonal diffraction 
symmetry [cf Figs. 1-4 of Welberry (1989)]. 

There is no way to distinguish between a quasicrystal 
and a high-order approximant within a given resolution. 
Thus, analysing the experimental data set by the n- 
dimensional approach one only fails if validity of the 
structural results is claimed for crystal parts larger than 

the respective experimental resolution (about 500/~) 
allows. For the discussion of the structure in terms 
of coordination polyhedra, structure motifs and bond 
lengths this makes no difference. The same is true for 
the case of high-order approximant twinning discussed 
in the preceding paragraph. 

In the case of any kind of random tiling-like structure 
(including coherent microdomain structures) an aver- 
aged quasiperiodic structure can be determined by an 
analysis neglecting diffuse scattering. In terms of the n- 
dimensional description, the n-dimensional unit cell of 
an average structure results from the superposition of 
all more or less differently occupied unit cells of the 
hypercrystal. Locally, such an average structure may 
look quite different from that which can be derived 
from an HRTEM image, for instance, since it reflects 
the global atomic distribution. As a result of averaging, 
distances between average atoms may be too small (split 
atoms). Consequently, constraints setting lower limits for 
possible interatomic distances must not be used in the 
refinements. 

Least-squares refinements 
A difficult problem in the course of the least-squares 

refinement of the five-dimensional structure model is 
the optimum parametrization of the two-dimensional 
perpendicular space components of the hyperatoms. In 
the case of the original Penrose tiling, for instance, these 
hyperfaces are represented by planar regular pentagons 
of well defined size with subregions corresponding to 
vertices of different types of coordination. Generally, the 
hyperfaces may have rather complicated shapes and fine 
chemical structure, especially in the presence of disorder, 
and each vertex type should be assigned a different 
temperature factor as is usual in the refinement of regular 
crystal structures. Because of the limited number N 
of observable reflections, however, the number n of 
variables must be kept small: a ratio N[n of at least 10 is 
recommended for standard structure determinations. A 
practical way out of this dilemma is to refine a rough 
structure model to an R factor smaller than ,~0.15 for 
obtaining reliable phases for most of the structure am- 
plitudes, and to work out the structural details employing 
the n-dimensional maximum-entropy method (MEM). 

Maximum-entropy method 
MEM principally represents a reconstruction tech- 

nique giving the least-biased deduction compatible with 
given information. Applying this method to the problem 
of Fourier inversion, the best obtainable electron-density 
map can be derived from a noisy and/or incomplete 
set of diffraction data (e.g. Sakata & Sato, 1990, 
and references therein; Livesey & Skilling, 1985). In 
the usual method of Fourier transformation of the 
structure factors ('Fourier synthesis'), all non-observed 
structure factors are set to zero and series-truncation 
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Fig. 1. X-ray precession photographs of decagonal Alz0NilsCots; all except (e) have plane symmetry lOmm. (a) Zero-layer photograph with the 
reflections 1 (10000), 2 (100i0), 3 (110i0), 4 (11110) marked. Scattering phenomena belonging to the disordered superstructure system are 
indicated by d. On the high-resolution photograph (b) satellite reflections are visible around the reflections 1, 2, 3 and 4, for instance. One star 
of satellite vectors of length ql around 2 and one other vector of length q2 pointing from reflection 4 to the centre of a diffuse pentagonal 
satellite cluster are marked by arrows. (c) The first diffuse layer belonging to the 8.08 A superperiod. The structured diffuse scattering shows 
systematically extinct regions along the star of reciprocal basis vectors (shown by an arrow). (d) The first Bragg layer of the 4.04 A period 
with systematic extinctions between the reciprocal basis vectors (shown by an arrow). The extinctions are partly superposed by the diffuse 
diffraction phenomena (indicated by d) of the superperiod. (e) The zero-layer photograph perpendicular to (a), clearly showing that the diffuse 
scattering (indicated by ld, 2d etc.) is present in the Bragg layers (indicated by 0, 1 etc.), also. (f) The cone-axis photograph (nth Bragg-layer 
rings are indicated by 0 and 1, nth diffuse-layer rings by - l d  and ld), allows a comparison of the integral intensities of Bragg and diffuse 
scattering. [Mo Ko~, Johansson-type focusing quartz monochromator, Rigaku RU 200 rotating-anode assembly, 0.3 x 0.3 mm 2 fine focus, 60 kV, 
90 mA, # - 30 °, 60 mm crystal-to-film distance for (a), (c), (d) and (e), 100 mm for (b), and 30 mm for (f); 172 h exposure time for (a) 
and (d), 224 h for (b), 378 h for (c), 112 h for (e), and 5 h for (f).] 
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effects (ripples, dummy maxima and minima) appear 
in the electron-density maps. Thus, both observed and 
unobserved structure factors influence the results. MEM 
calculations, however, may be compared to constrained 
many-parameter least-squares refinements. A quasi- 
continuous electron density is modelled to obtain the best 
fit of calculated to observed structure factors. Another 
application of MEM, which was not used here, is 
the ab initio phase determination of structure factors 
(Bricogne & Gilmore, 1990). The first examples of 
MEM in the course of n-dimensional structure analyses 
of incommensurately modulated phases and decagonal 
quasicrystals were presented by Steurer (1992) and for 
the Fibonacci chain by Papoular, de Boissieu & Janot 
(1992). 

In the present study MEM was employed following 
the five-dimensional least-squares refinements for ob- 
taining high-quality electron-density maps of decagonal 
A170NilsCOls. Since in our case of a centrosymmetric 
structure the phase problem was reduced to the sign 
problem, and the least-squares refinements yielded a 
final R factor significantly smaller than 0.1, it could be 
assumed that most of the signs obtained in this way 
were correct [the calculated signs were assigned to the 
observed structure amplitudes IFobs(H)l] constituting a 
good MEM starting set. 

For the calculations the Shannon/Jaynes configura- 
tional entropy 

S = -~pn(r ) ln[pn(r ) /pn  _ l(r)], 

with the probability pn(r) = p(r ) /Ep(r ) ,  the prior prob- 
ability Pn - l(r) = T(r)/E-r(r), the electron density p(r) 
and the prior electron density -r(r) at a particular pixel 
r, was maximized under the constraint that the sum over 
the squared differences between observed and calculated 
structure factors becomes a minimum at the same time. 
The unconstrained maximization of S would result in a 
uniform electron-density distribution p(r). Thus, using 
some approximations (Sakata & Sato, 1990) we get for 
the electron density 

p(r) = "r(r)exp{ 2 VAE [Fobs(It) - F~alc(H)] 

x cos(27rtt.r)/a2 (It) 1, 

with a Lagrange multiplier A and weights of the struc- 
ture factors inversely proportional to their experimental 
variances a2(H). The summation runs over all H, the 
electron density p(r) is given on a regular orthogonal 
grid defined in the physical space. The structure factors 
are calculated by Fourier transformation of the electron 
density 

Fcalc(tt) = 2V~p(r)cos(27rH.r) 

summed up over half the grid points in the crystal 
volume V. Symmetry in direct and/or reciprocal space 

was taken into account. The iterations were started 
with uniform electron density on all grid points. For A 
the maximum starting value giving convergence in the 
iterations was chosen by trial and error and optimized 
dynamically in the subsequent iteration cycles. The re- 
suits were independent from the selected values. Values 
which were too small, however, needed a larger number 
of iterations to reach convergence. 

The aim of the MEM calculations was to obtain 
large high-resolution density maps parallel to the phys- 
ical space, and therewith an accurate representation 
of the quasiperiodic structure. By lifting the atoms 
in the embedding space, i.e. by assigning them all 
to a single five-dimensional unit cell, the shape of 
the hyperatoms parallel to the perpendicular space was 
reconstructed. Since no artifacts could be detected by 
visual inspection of the physical-space maps, the lift- 
density maps contain reliable information. In contrast the 
same sections calculated by Fourier synthesis are biased 
by truncation effects. Thus, the lifting process can be 
seen to act like a kind of noise filter. 

The calculation of asymmetric units of physical-space 
electron-density maps was carded out on the following 
grids: 4000 x 4000 for a 190 x 190 A 2 section of the 
density projected along the tenf~)ld axis; 500 x 500 × 11 
for a 95 x 95 x 1 A 3 volume of the three-dimensional 
quasiperiodic structure. The computation time in the first 
case, using only hlh2h3h40 reflections, was about 2700 s 
for 17 iteration cycles, and in the second case, using 
all reflections, was 1800 s for 32 cycles on a Siemens 
$400/10 array processor. The electron density on the 
4000 x 4000 grid was scanned by a peak-search program 
and the integrated densities above a given threshold 
value lifted into the five-dimensional unit cell giving the 
perpendicular space components of the five-dimensional 
hyperatoms. 

Experimental 
An alloy ingot with nominal composition A170Nil 5Col 5 
was prepared by melting a mixture of A1 (99.999%), 
Ni (99.98%) and Co (99.9%) in an induction furnace 
under Ar (99.999%) atmosphere. It was remelted un- 
der Ar and slowly cooled down (5 K min -1) to room 
temperature. Subsequently, the sample was annealed at 
1123K for 1 d in an evacuated quartz ampulla and 
quenched in water. The ingot was crushed and several 
crystals with decaprismatic morphology were ground to 
spheres in a Bond chamber. An approximately spherical 
crystal with diameter 0.18 (2)mm was selected after 
checking by Laue photographs. The bulk density of the 
ingot was determined by displacement in CC14 to Dm 
= 4.17 (1)Mg m -3. Since the samples contained cavities 
this value should rather be taken as a lower limit for 
the actual value which might be 5-10% higher. For 
comparison, the density of the monoclinic approximant 
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AII3C04 (actually A174C026 according to the refined 
composition) was reported as Dm = 3.81 (5)Mgm -3 
(Hudd & Taylor, 1962). 

The data collection was performed on an En- 
raf-Nonius CAD-4 four-circle single-crystal diffrac- 
tometer equipped with graphite monochromator (Mo Kc~, 
A = 0.70926 A). In a first run a unique set of 4523 
reflection intensities was collected within 0 < 0 < 45 °, 
the indices in the range -6 < hi < 6, i = 1 . . . . .  4, 0 < 
h5 < 8 and IHI -< 2 A -l. All reflections with intensities 
I(H) > 2cr[l(tt)] were recollected within ten different 
asymmetric units to obtain better counting statistics 
and to minimize the influence of systematic errors 
by averaging. Thus, 5930 additional intensities were 
measured; the continuous 2.5% decay of the intensity- 
control reflection was corrected for, as well as the 
Lorentz and polarization effects. A spherical absorption 
correction was performed (minimum and maximum 
transmission factors 0.243 and 0.286, respectively); 
the linear absorption coefficient # = 10.1  mm -1 
was calculated from the mass absorption coefficients 
#k]P of the elements (International Tables f o r  X- 
ray Crystallography, 1962, Vol. III). The corrected 
intensities were averaged yielding 556 unique reflections 
(Ri = 0.059); 253 reflections with I(H) > 2~r[l(H)] were 
used in the subsequent least-squares refinements and 
MEM calculations. Reflections with intensities I(H) _< 
2cr[l(tt)], which are comparable to that of the underlying 
diffuse scattering, could not be separated adequately 
from the background and were rejected. The intensity 
distribution as a function of the perpendicular versus the 
parallel component of the diffraction vector H -- ( H  II, 

I-I ±) is illustrated in Fig. 2. 
For the characterization of the quality of the sin- 

gle crystals and the exploration of the distribution of 
Bragg reflections and diffuse scattering numerous X- 
ray photographs (Fig. 1) were taken using the Buerger 
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Fig. 2. Intensity statistics as a function of the perpendicular versus the 
parallel component of  the diffraction vector H = ( I t  II, H -L ). The radius 
of  the circles is proportional to the respective structure amplitudes. 

precession technique (for experimental details see figure 
captions). All precession photographs were over-exposed 
by at least a factor of 100 to visualize any weak 
diffraction phenomena like diffuse scattering, satellites 
or periodically arranged reflections in the case of approx- 
imants or twins. All Bragg reflections on the photographs 
except two types of satellite reflections can be indexed 
using the basis vectors ai*, i = 1 ..... 5. One set of satel- 
lites (Fig. lb, labelled ql) can be indexed by defining 
a star of satellite vectors ~* = 0.124ai*, i -- 1 ..... 4; 
however, no satellites were included in data collection. 

Diffuse interlayer lines on the precession photograph 
containing the tenfold axis (Fig. 1 e) and on the cone axis 
photograph (Fig. l f )  indicate that the translation period 
perpendicular to the quasiperiodic layers (approximately 
4 A) has to be doubled. Similar diffuse diffraction phe- 
nomena, however, are also present in the layers of Bragg 
reflections masking the systematic absences ('between 
reciprocal basis vectors') of the reflections 

hlhzh2hlhs: h5 = 2n + 1. 

It is remarkable that for the diffuse scattering an extinc- 
tion rule ('along reciprocal basis vectors') equivalent to 
that for the Bragg reflections is observed 

hlOh3h3hs: h5 = 2n + 1 

indicating the five-dimensional space groups PlOscm 
and PlOs/mcm, respectively, for the 8 A, superstructure. 
Thus, the set of c-glide planes present in the superstruc- 
ture is rotated by 7r/10 with regard to the set of c-glide 
planes of the basic structure. 

The second type of satellite reflections mentioned 
above is grouped in small pentagons with centres located 
on the same positions in the Bragg layers (Figs. la and 
ld) as the diffuse maxima in the intermediate layers (Fig. 
lc). Since the diffuse layers show reduced intensity at the 
positions of strong Bragg spots, one can conclude that 
these pentagonally clustered satellites belong to the 8 A 
superstructure system. For a more detailed description 
of the diffuse-scattering phenomena see Frey & Steurer 
(1993). 

Structure refinement and results 

From the striking similarity between the X-ray 
diffraction patterns of decagonal A170Ni15Co15 and 
A165Cu20Co15 a close resemblance between their 
structures was expected. This was confirmed by 
the similarity of the characteristic sections of the 
respective five-dimensional Patterson functions [Fig. 
3 of the present paper and Fig. 3 of paper (I)]. 
The least-squares refinements were performed starting 
with the five-dimensional structure model obtained 
for decagonal A165Cu20Co15. With some modifications 
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indicated by five-dimensional Fourier and difference 
Fourier syntheses, such as the decomposition of the 
hyperatoms 1 and 2 into partial hyperatoms 1' and 
1", and 2' and 2", respectively, a model was derived 
which converged quickly to the final values R = 0.091 
and wR = 0.078 for 21 refined parameters and 253 
reflections. The high quality of the least-squares fit is 
illustrated in an Fo~(H)/Fcalc(H) plot (Fig. 4). Table 1 
lists the 19 refined atomic parameters and those fixed.* 
The occupancy factor of hyperatom 3 was set to 1/2 
because the short distance of 2.040/~ does not allow 
both the atomic sites in 00001/4 and 00003/4 to be 
occupied simultaneously. The occupancy factor of partial 
hyperatom 1' was set to 1/2 because split atoms are 
generated by this area. Additionally, one scale factor and 
one empirical extinction factor g were refined {bcalc(H) 
= Fcalc(H)[1 - gF2bs(H)]/(sinO/A)} which adopted a 
value of g = 0.00058 (6). Strong extinction effects 
for 0000h5 reflections could be expected since these 
reflections are very sharp. The reflection 00002, for 

* A list of structure factors has been deposited with the British 
Library Document Supply Centre as Supplementary Publication No. SUP 
71041 (3 pp.). Copies may be obtained through The Technical Editor, 
International Union of Crystallography, 5 Abbey Square, Chester CH 1 
2HU, England. 
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instance, shows a full width at half maximum of only 
0.012 ° corresponding to a coherence length of about 
2500/k (measured with synchrotron radiation on another 
crystal at HASYLAB/DESY with A = 0.9250 A). The 
stoichiometry of the single crystal used was not 
constrained in the refinements. However, the result came 
very close that of AI69.6Nils.2COls.2 which is also very 
close to the nominal composition. Characteristic sections 
through the five-dimensional Fourier synthesis represent 
the distribution of the five-dimensional hyperatoms in 
the unit cell (Fig. 5) and their perpendicular space 
shape (Fig. 6). For comparison, the MEM high- 
resolution density maps obtained by the lifting method 
are also shown (Fig. 6). The peripheral parts of the 
hyperatoms with lower density correspond to the split 
atoms visible in the physical-space electron-density 
maps. The electron-density maps of the quasiperiodic 
layers in relation to the generation of five-dimensional 
hyperatoms are drawn in Fig. 7. The two typical in-plane 
atomic distances d = 2.456 A (radius of a pentagon = 
edge length of the corresponding Penrose unit tile) and 
d = 2.887/k (edge length of the pentagons) are marked 
as well as typical split atoms which are interpreted in 
Fig. 12(b). In Fig. 7(c) the distance d = 2.543 ,/k between 
two atoms belonging to pentagonal structure units of 
adjacent layers is given. It is shorter than the in-plane 
bond with d = 2.887/k. The highest maximum in the five- 
dimensional difference Fourier syntheses is about 2.6% 
of the highest maximum in the corresponding Fourier 
synthesis. The density of the final model, calculated 
from the least-squares fit parameter, amounts to Dx 
= 4.5 Mgm -3 and is within the estimated density of 
4.2-4.6 Mgm -3 The mean atomic volume of 13.5/k 3 is 
smaller than that of monoclinic Ali3Co4 with 14.2~ 3 
for fully occupied atomic sites (hypothetical case) and 
15.6/k 3 for the actual structure with partial occupation 
of particular positions. It is comparable, however, to 
the calculated density of Dx -- 4.4 Mg m -3 and the mean 
atomic volume of 13.8A 3 for hexagonal Co2A15 (i.e. 
A171.4Co28.6) (Newkirk, Black & Damjanovic, 1961). 
The mean atomic volume of 14.0/~3 and the density of 
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Fig. 5. (10110) sections of the five-dimensional Fourier function cal- 
culated after the last refinement cycle using Fobs(H) for Fourier 
coefficients. The hyperatoms in the asymmetric unit are marked by 
1, 2 and 3. All coordinates are given on the v basis. 
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4.3 Mg m -3 derived from the MEM maps are possibly 
more reliable than the values obtained from the fitted 
model parameters. In any case the density of the 
decagonal phase is significantly higher than that of its 
approximant phase, All 3Co4, indicating that the one type 

of quasiperiodic layer packing is more effective than the 
two types of periodic layer stacking of the approximant 
phase. 

A comparison with the results of Yamamoto, Kato, 
Shibuya & Takeuchi (1990) is difficult: they used a 
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0 1 2 3 4 5 x 1 6 
(a) 

crystal with nominal  composi t ion A170Co20Nil0, pos- 
sibly located in the two- or three-phase region of  the 
A1-Ni-Co phase diagram (Kek, 1991), with dimensions 
0.2 x 0.2 x 3 mm and without applying any absorption 
correction; they included only the strongest 41 reflec- 
tions in the refinements giving R = 0.11 as against 
our R = 0.03 for this subset. Thus, the information 
given in their paper is rather limited. Nevertheless, some 
rough similarities in the structure models can be found: 
the same special positions are occupied in the five° 
dimensional  unit cell but the hyperatomic shapes are 
rather different, however.  

D i s c u s s i o n  

Packing and structure of the columns 

The 190 x 190A 2 MEM electron-density map of  
A170Ni]sCOls, a projection down the tenfold screw axis, 
displays characteristic large and small wheel-l ike mo- 
tifs with decagonal symmetry completely covering the 
plane (Fig. 8). The large wheels appear to be packed 
in two ways: sharing one decagon edge with each 
other resulting in a distance S = 12.23(1)/k from centre 
to centre, or being bridged over two ,--,6/k diameter 
disks leading to a distance L -- TS = 19.79 (1)/k ('r -- 

0 1 2 3 4 
(b) 

5 x 1 6 

O @ ° ®  0 @  Q @ @ 
x2- o @ @ ®o ® @® o °Q 

0 @  0 @  @ @ O ~ @ Q  
5 -  

@ @ @ 0  @ , g  @ 
_ " @ Q @  o O ~ @ @ @ 

@ o 0 @ Q o o® e I O e 
4 -  @ ® o° @ o @ ° ®  @ 

0 0  ® @ @ 0  @ @  
@ @ Q ,~ ,~ @ • ® Q  

3-  ®o @ o ° @ o o @ @ o @ 
_ Q  @ o® o 0 @ 0 @ '~ 

@ @ ® , ~  ,,o @ @ @  @ 
2 -  @ ®  0 0  @ @ Q 0 0  

_ 0 0  @ ,~ @ 0  @ @  o Q 
o 0 @ o® ° @ @ ,:::::,@ 

1 -  @ _ _ Q  @ Q  o o 0  @ 0 @  @ 

| 0 o @ o @ @ o @ 

~ I i I w i- ~ I i I I 

0 1 2 3 4 5 x 1 6 
(c) 

Fig. 7.22.7 x 22.7 A 2 parallel-space (11000) sections of the five-dimensional Fourier function at (a) x3 = 1/4, (b) x3 = 3/4 and (c) the projected structure. 
Additionally, the respective ( 10010) sections, with one unit cell drawn in and hyperatoms numbered, are shown to visualize the correspondence between 
five-dimensional and three-dimensional structure. One prominent structure moti f, an icosagon formed by rectangles and pentagons, is drawn in (a) and 
(b). Two pairs of split atoms are marked by arrows in (a), the different pentagon-rectangle strips belonging to one pair of split atoms are shown in (b). 
All coordinates are given on the v basis. 
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1 . 6 1 8 . . . ,  - the golden mean). Frequently, the wheels are 
arranged in small or large pentagonal clusters with edge 
lengths S and L, respectively. The MEM density map 
shows a striking resemblance to HRTEM micrographs 
of A170NitsCot5 annealed at 1073 K (Hiraga, Lincoln 
& Sun, 1991): the wheels in our map exactly corre- 
spond to the ring contrasts in the HRTEM structure 
images. By connecting the centres of these rings a 
quasiperiodic pentagon tiling can be obtained whereas 
for the sample annealed at 823K a rhombic tiling 
with periodic regions (crystalline microdomains) results. 
Hiraga et al. interpreted the ring contrasts as caused 
by columnar clusters, and derived a structure model 
which is essentially compatible with our electron-density 
distribution (Figs. 7 and 8). A schematic drawing of 
the cross section of such a columnar cluster is shown 
in Fig. 9. Stacking these units alternately with ~ts 
rotated 27r[ 10 around the common fivefold axis, results in 
a columnar cluster with cylindrical symmetry 105/mmc 
and two-layer (,-.,4 A) periodicity, which consists of a 
central column surrounded by ten piles (its architecture is 
similar to the Greek kind of temple called monopteros). 
The central pentagons of the stacked layers form a 
pentagonal antiprismatic channel, its triangle faces being 
tesselated by slightly distorted tetrahedra (Fig. 10). The 
five empty peripheral pentagons of each structure unit are 
superposed by the five centred pentagons of the adjacent 
layers building ten pentagonal antiprismatic channels, 
but now only one half of the triangle faces are tesselated 
by tetrahedra. Each of the peripheral channels is linked 
to two neighbours via edge-sharing tetrahedra (Fig. 10). 
The dimensions of the pentagonal channels are, with a 
pentagon edge length of 2.887 (1)/~ and a radius of 
2.456 (1)/l, large enough to allow basic diffusion of 
atoms. 

It is remarkable that the characteristic structure motif 
of the basic unit of the columnar clusters (monopteros), 
a strip of alternating pentagons and rectangles (marked 
in Fig. 9), is equivalent to the dominating element in the 
puckered y = 1/4 layer of the monoclinic approximant 
structure of All3Co4 (Hudd & Taylor, 1962) (Fig. 11). 
This approximant layer consists of a wavy network of 
interpenetrating bands of alternating slightly distorted 
pentagons and rectangles with comers occupied by Al 
atoms, and the pentagons capped by Co atoms• The 
shuttle-like areas between the bands each contain one A1 
atom at adjoining corners of two equally sized distorted 
pentagons. In the basic unit of the columnar cluster 
(monopteros) the same shuttle-like areas can be found 
but now one of these pentagons becomes regular at 
the cost of the other replacing A1 by TM (TM denotes 
transition metal, i.e. Ni/Co) atoms. It is noteworthy that 
the layers building the decagonal phase appear to be 
planar whereas the related atomic net of monoclinic 
Al13Co4 is puckered (,--~+0.3 ,/k). The projection of all 
the electron density on the tenfold axis, however, shows 

a density distribution with a large maximum centred 
at x3 = 1/4 and small shoulders resulting from another 
underlying broader or double-peak distribution function 
centred also at x3 = 1/4. This second distribution function 
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Fig. 8. Electron-density maps calculated by MEM. (a) 190 x 190 A. 2 
parallel-space (11000) projection with super Penrose tiling drawn in, 
and distances S and L marked. One columnar cluster, consisting of a 
central column surrounded by ten piles (monopteros), is shaded. In (b) 
a magnified part of  (a) is given to show the relationship between the 
basic Penrose tiling with edge length ar -- 2.456 (1) ,/% and the super 
Penrose tiling with aSr = 2ar(3sin27r[5 + 2sin27r/10) = 19.79 (1) A. 
All coordinates are given on the v basis. 
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indicate~ that a part of the atoms is located out of plane. 
Inspecting the (00110) sections of the five-dimensional 
Fourier syntheses of hyperatoms 1 and 2 (Figs. 6b and 
6e) one finds that the density in the central part of 
hyperatom 2 is much more spread along x3 than in those 
at the periphery (compare sections a and b of Fig. 6e). 
This finding is reflected in the values of the thermal 
parameters B~of partial hyperatoms 2' and 2" (cf. Table 
1), which correspond to r.m.s, displacements (u2) 1/2 = 
0.3/~ for A1 correlated with the central part compared 
to (u2) 1/2 = 0.2/1, for the others. It is not possible, 
however, to distinguish whether these values are related 

.L 
/ <,.I/~-7 \I/<,.I. 

Fig. 9. Schematic drawing of the planar basic structural unit of a 
columnar cluster (monopteros) .  A crucial role is played by the 
triangle inside the decagons which can adopt three different equivalent 
positions as indicated. Open circles correspond to Ai and closed circles 
to Ni/Co atoms. One of the pentagon-rectangle strips, an important 
structure motif, is shaded; one of the very short in-plane AI--AI 
distances is marked by an arrow. 

(a) (b) 

¢:: 

(c) 

Fig. 10. (a) Schematic representation of the tessellation of the pentagonal 
antiprismatic channels with tetrahedra; (b) the central channel; (c) the 
peripheral channels are linked via edge sharing tetrahedra. 

Table 1. Parameters of the five-dimensional hyperatoms 
of decagonal A170Ni15C015 with e.s.d. 's in parentheses 

The parameters listed are fractional hyperatomic coordinates xi, i -- 

1 .. . . .  4 (d basis); parallel-space temperature factors Btt isotropic in the 
quasiperiodic layers, and B]~ perpendicular to them (A2); perpendicular- 
space temperature factor B ± (A2); total site-occupancy factor p~, partial 
site-occupancy factors PAl and PNi/Co; radial hyperatomic size parameter 
Ak as a fraction of ai (a negative value denotes an opposite direction of 
)~/~ei); decagon parameter 0 (rad). Hyperatom 1 of Fig. 5 is composed 
of the partial hyperatoms 1' and 1", hyperatom 2 of 2' and 2".  All 
hyperatoms in the asymmetric unit are located at x5 --- 1/4 (d basis), 
have site symmetry 5 m m  and multiplicity 2. 

Param- Hyperatom Hyperatom Hyperatom Hyperatom Hyperatom 
eter 1' 1" 2' 2"  3 
xi 2/5 2]5 4/5 4/5 0 
B~ 9(1) 1.19(5) 1.7(2) 2.9(5) 1(1) 
B~3 1.0(4) 0.57(5) 3.9(3) 7(1) 1(1) 
B -u 0 0 1.7(4) 0 0 
Pk 1/2 1 1 1 1/2 
PAl 0.94(10) 0 1 1 0 
PNi/Co 0.06 1 0 0 1 
Ak -0.42(1) -0.29(2) 0.412(3) 0.18(3) 0.067(5) 
0 0.27(4) 0.07(9) 0 0 0 

to thermal vibration or static positional disorder on 
the basis of our data. Since the central part of the 
hyperatoms generates fivefold coordinated vertices, the 
A1 atoms centring the peripheral pentagons in Fig. 9 
are those with the largest out-of-plane displacements. 
This is quite natural because the distance from these 
centring A1 atoms to the A1 atoms located at the comers 
of the pentagons in the adjacent layers below and above 
amounts to 3.193/~, and the in-plane distance to the AI 
atom of the original pentagon is only 2.456/~ compared 
to the equilibrium A1--A1 distance of 2.887 A found in 
the other parts of the structure. If all centring A1 atoms 
are displaced by x3 = 1/4 (~ 1/~) in the same direction 
the centred pentagonal antiprismatic channels could be 
described more accurately as a chain of cap-connected 
icosahedra. These correlated shifts of centring atoms 
may possibly cause disordering phenomena related to 
the diffuse scattering observed. 

It is known from the study of the crystalline alloys 
in the binary systems A1-Ni and A1-Co that strong 
interactions between A1 and TM exist as a result of 
electron transfer from A1 to TM. Consequently, the 
resulting A1--Co distances are smaller than A1--Ni 
distances since Co, with one d electron less than Ni, 
is a stronger electron acceptor. That the same is true 
in the case of decagonal A170Ni15Co15 is suggested 
by the diamagnetic behaviour of this phase at room 
temperature which indicates completely filled d bands 
(Lfick & Kek, 1993). Thus, covalent bonding as a result 
of hybridization effects between the TM d orbitals and 
the aluminium s and p orbitals may play a role in 
A1-TM compounds since, for instance, even in molten 
A1-Ni alloys the small mean atomic volume of 15.8/~3, 
compared to 18.8/~3 for a linear interpolation between 
the atomic volumes of the pure elements, indicates strong 
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interactions. The covalent bonding parts may favour 
planarity of the pentagon-rectangle strips. 

In both A1-Ni and A1-Co binary systems metastable 
decagonal phases of approximate composition AI75Ni25 
and A17sCo2s were detected whereas the All3Fea-type 
approximant only exists in the A1-Co system. The solu- 
bility of Ni in Al13Co4 is small whereas by substitution 
of Co by Ni in metastable decagonal A175Co25 a stable 
decagonal phase can be produced. Thus, substitution of 
Co by Ni must influence the local coordination of this 
particular atom rather strongly. Looking at Fig. 9, one 
finds two types of TM coordination: TM centring A1 
pentagons is coordinated by five A1 atoms in plane and 
2 x 3 -- 6 A1 atoms in the adjacent layers; TM's at the 
corners of the peripheral pentagons are also surrounded 
by five A1 atoms in plane but they form infinite TM-TM 
zigzag chains running in the periodic direction with TM 
of the neighbouring layers (dTM--'rM -- 2.543 A). Thus, 
accepting formal valencies of -0.61 for Ni, -1.71 for 
Co and +3 for AI (Raynor, 1949), Co is more likely to 
occupy the atomic sites surrounded completely by A1. 
This coordination-dependent distribution of Ni and Co 
may be one explanation for the stability of the ternary 
decagonal phase in contrast to the binary metastable 
phases. 

From the inspection of the MEM density maps and 
the interpretation of the HRTEM structure images of the 
high- and the low-temperature phases (Hiraga, Lincoln 
& Sun, 1991), it is obvious that the columnar clus- 
ters (monop teros )  represent the basic structural elements 
building the decagonal quasicrystal as well as the low- 
temperature microdomain structure. The preferred for- 
mation of columnar structure elements is also indicated 
by the columnar growth morphology of the decagonal 
phases: depending on the cooling rate, the needles reach 
length/diameter ratios of up to 100. For analysing the 
quasiperiodicity of the packing, the identification of 
a quasilattice (tiling) decorated with these columnar 
clusters would be very valuable. Thus, a natural choice 
for the edge length of a basic tile would be ar = L, 
the distance between two columns. This would also 
be consistent with the distribution of ring contrasts in 
the HRTEM micrographs of both the high- and the 
low-temperature phase of A170NilsCols. In a Penrose 
tiling of this size drawn in the MEM map (Fig. 8) the 
wide rhombs appear to be decorated by columns on the 
vertices and on the long diagonals. There are no mistakes 
in the decoration of the vertices whereas in some cases 
the columns are flipped to the alternate positions on the 
long diagonals by reflecting through the short diagonal. 
These flips allow the formation of additional pentagonal 
clusters of columns with distance S from each other. 

How arbitrary is the choice of a particular basic tile? 
This question is of interest since numerous theoretical 
models have been proposed with vastly differing unit- 
cell dimensions (Henley, 1993). Thus, an experimental 

finding uniquely fixing the edge length would be very 
valuable. One strong argument supporting our suggested 
tile size ar = L can be derived from the HRTEM findings 
(Hiraga, Lincoln & Sun, 1991): the packing of columns 
in the high- as well as in the low-temperature phase can 
be described by using the same wide and narrow rhombic 
unit tiles with ar = L. T h e  other strong argument is based 
on the interpretation of the X-ray diffraction patterns 
(Fig. 1): our indexing is related to an edge length of the 
rhombic unit tile a r  -- 2.456(1)/~ with an ambiguity of 
a factor ~-" (n -- ..., -1, 0, 1, ...). The correspondence 
between a Penrose tiling based on such a small tile and 
our large tile is shown in Fig. 8(b). The vertices of the 
large tiling are a subset of those of the small one; they 
cannot be transformed into each other simply by scaling 
operations. Thus, the large tiling may be interpreted as a 
superstructure of the small one. The supercell is rotated 
by M10 relative to the basic cell, i.e. as much as the set 
of c-glide planes of the two-layer structure is relative to 
that of the four-layer superstructure related to the diffuse- 
scattering phenomena (layers in Fig. l e). The supercell 
results in the actual structure by the ordered occupation 
of one of the split positions (see Fig. 8b). Thus, if these 
considerations are correct superstructure reflections have 
to be observed. Indeed, the satellites, identified in Fig. 
l(b) by vectors of length aT* = 0.124ai*, correspond 
exactly to a superstructure with edge length ar = L of 
the large unit tile. Fortunately, no ambiguity exists in 
the length of the satellite vector and the corresponding 
value for the edge length of the unit tile is fixed to ar 

= L -- 19.79(1)~ which is consistent with the HRTEM 
findings. 

Since we observe a Penrose tiling-like arrangement 
of columnar clusters, it might be possible to find lo- 
cal matching rules responsible for the quasiperiodicity, 
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Fig. 11. Schematic representation of the puckered y -- 1/4 layer of 
the monoclinic approximant A113Co4. A characteristic subunit also 
occurring in the decagonal phase structure is shaded, the out-of- 
pentagonal plane deviations of capping Co atoms (closed circles) 
are given in A. The arrows indicate the direction of increasing y 
parameter. One unit cell is drawn in. 
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explaining why the columns pack in a quasiperiodic 
manner. To this end, we discuss the scenario of how 
the clustering might occur: we start with one isolated 
column (monopteros) and connect it to a second one. 
The two colunms, sharing two piles with each other, 
have a distance L and no atomic relaxation is necessary 
as a consequence of linking. The same consideration 
is valid for adding a third column (Fig. 12a) whereas 
the coupling of a fourth results in an ambiguity in the 
positions of two atoms per layer in the area common 
to two columns (marked in Fig. 12b). The centres 
of the four columns occupy the vertices of a wide 
rhombic tile with edge length ar = L, with mirror 
symmetry around the short diagonal and a glide plane 
along the long diagonal. Removing the ambiguity by 
adopting one of the two possible atomic sites and slightly 
displacing one of the neighbouring atoms as indicated, 
a new column, with distance S to three other vertices 
and distance L to the far vertex, is generated on the 
long diagonal breaking the mirror symmetry of the 
rhombic tile. The short pentagon-rectangle strips which 
form a concave closed pentagonal band in the case 
of the isolated column are now connected to a nearly 

closed icosagonal ring. This icosagon can be closed by 
shifting two further atoms, and in the course of the 
continuing agglomerating process an extended network 
of closed icosagons is developed (Fig. 13). Under the 
assumption that the infinite pentagon-rectangle bands 
present in the approximant crystal Al13Co4 (Fig. 11) 
stabilize the monoclinic structure, the formation of an 
infinite network of these bands may also stabilize the 
quasiperiodic structure (resonance effect). 

The structure of the layers 
Let us now check the validity of the model discussed 

above by inspecting the electron-density maps of the 
quasiperiodic layers (Figs. 7 and 8). One notices, be- 
side unequivocal electron-density maxima located on 
decagons and icosagons, numerous smeared and double 
peaks lying in between. These ambiguous peaks can be 
related to atoms shifted into either of the alternate po- 
sitions during the relaxation of the four-column clusters 
forming the unit tile, since in the average structure all 
these different arrangements located in different parts of 
the crystal are projected onto each other. These alternate 

4- 
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Fig. 12. Schematic scenario of the clustering process. (a) The linking of three columnar clusters (monopteros). The fourth cluster is connected in (b) 
leading to one pair of ambiguous atomic positions (marked by arrows). The icosagonal pentagon-rectangle ring can be closed by shifting 
two atoms (drawn with dotted lines and marked by small arrows). 
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arrangements may even be realized in different layers of 
each single wide unit tile, compensating in this way for 
the in-plane shifts forced by the clustering process by 
reversed shifts in the neighbouring double layers. This 
could also explain the existence of the 8/k superperiod, 
and even its symmetry: the reflection plane relating the 
alternate positions in the average structure to each other 
would become a c-glide plane in the superstructure. The 
old glide plane, including an angle of 7r/10 with the 
new one, would vanish in the superstructure. Thus, the 
resulting stacking order of the 8/k superstructure can be 
written in the form AaA'a': A and a, as well as A' and a', 
respectively, are related by the c-glide plane with a glide 
component one layer up or down and direction 'between' 
the basis vectors; the c-glide plane relating A and A', as 
well as a and a', has a glide component two layers up 
or down and direction 'along' the basis vectors. Since 
the difference between the two enantiomorphic structures 
is small, the flip to the alternate position may occur 
many times during crystal growth eliminating mistakes 
in the quasiperiodic arrangement of tiles. These flips 
also allow a large number of combinations of the Y- 
like strips inside the closed icosagonal rings increasing 
the configurational entropy (Fig. 13). Thus, the vanishing 
of the structured diffuse scattering at high temperature 
may indicate a statistical distribution of these Y strips 
stabilizing the decagonal phase entropically. Lowering 
of temperature may force a more ordered antiphase 
arrangement of Y strips which is reflected in the diffuse 
scattering with systematic extinctions. 

0 5 10 15 20 2 

Fig. 13. 95 x 95/~ 2 parallel-space (11000)section at x3 = 1/4 of the 
MEM electron-density map with the interconnected network of closed 
icosagonal rings and super Penrose tiling drawn in. The Y-like strips 
inside the closed rings may flip to alternate positions. 

A glance at a 95 × 95 ,/t 2 MEM electron-density map 
of one layer (Fig. 13) reveals the complicated intercon- 
nected network of the pentagon-rectangle bands. Similar 
bands, as subsets of a Penrose tiling, have been predicted 
theoretically as main structure elements of decagonal 
phases by Kumar, Sahoo & Athithan (1986). A local 
matching rule can now be defined as an instruction to 
continue the strips ending at the edges of each unit tile in 
an appropriate way. It is not possible, however, to define 
two basic tiles invariably decorated with fragments of the 
strips. This decoration is context dependent. Certainly, 
this is only a weak local matching rule since rather long- 
range interactions are essential. It is also possible to build 
a periodic structure by packing the columns (Fig. 14) but 
impossible to obtain an interconnected network of closed 
icosagonal pentagon-rectangle rings. Closing of a ring 
in one unit cell opens the ring in the neighbouring unit 
cell. Thus, quasiperiodicity is a necessary condition for 
obtaining a network of closed rings. 

Concluding remarks 

A quantitative X-ray structure analysis was performed 
on a single crystal of decagonal A170NilsCol5 using 
the higher-dimensional embedding method. The five- 
dimensional least-squares structure refinements were per- 
formed primarily to obtain phases for the structure 
factors, which are necessary to get a good start for 
the calculation of accurate electron-density distribution 
maps by the maximum-entropy method (MEM). From 
the maps columnar clusters were derived as basic struc- 
tural units in accordance with HRTEM results. The 
quasiperiodic distribution of these columnar clusters 
was interpreted in terms of a super Penrose tiling with 
dimensions of the basic rhombs fixed by the satellite 
vector. This tiling shows a context-dependent decoration 

L< 

,x // 

Fig. 14. Schematic representation of a periodic structure built from the 
wide rhombs of the super Penrose tiling. The closing of one icosagon 
opens another one in the neighbouring unit cell (marked on the lower 
right-hand side). 
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with pentagon-rectangle strips leading to an intercon- 
nected infinite network; the same bands can be found 
in the approximant structure of  A113Co4 connected to 
periodic nets. Quasiperiodicity, however, is a necessary 
prerequisite for the existence of an infinite network of  
interconnected closed icosagonal rings. 

This work was supported by DFG Ste581/1-1. 
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Abstract 

Crystals of  disodium monocalcium tartrate monosuc- 
cinate (TMS) trihydrate, Na2Ca(CsH6OI0).3H20, Mr = 
402.2, are monoclinic, space group P21/n with a = 
7.989(1), b = 16.543(2), c = 11.416(1) A, /~ = 106.48(1) °, 
V = 1446.8(6)A 3, Z = 4, Dx = 1.846 Mg m -3, A(Mo Kc0 
= 0.71069 A, #(Mo Ka) = 0.55 mm -1 and F(000) = 824. 
X-ray intensity data for 3337 independent reflections 
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with F > 4or(F) and 20 < 60 ° were measured. The struc- 
ture was refined to R(F) = 0.031. The crystalline phase 
studied here is the sodium salt of a Ca(TMS) 2- complex, 
with edge-bridged trigonal bipyramidal and octahedral 
geometries for the Na ÷ ions and a dodecahedral geometry 
for the eight-coordinate Ca 2÷ ion. The O atoms from the 
ether moiety and three carboxylate groups of  the TMS 
anion participate in a tetradentate binding to the Ca 2÷ ion. 
The a-hydroxycarboxylate group of the tartrato portion 
of  the anion exhibits bidentate binding to the Ca 2÷ ion 
and one carboxylate group serves as a bidentate chelate 

Acta Crystallographica Section B 
ISSN 0108-7681 © 1993 


